139 research outputs found

    Characterizing the bending and flexibility induced by bulges in DNA duplexes

    Get PDF
    Advances in DNA nanotechnology have stimulated the search for simple motifs that can be used to control the properties of DNA nanostructures. One such motif, which has been used extensively in structures such as polyhedral cages, two-dimensional arrays, and ribbons, is a bulged duplex, that is, two helical segments that connect at a bulge loop. We use a coarse-grained model of DNA to characterize such bulged duplexes. We find that this motif can adopt structures belonging to two main classes: one where the stacking of the helices at the center of the system is preserved, the geometry is roughly straight, and the bulge is on one side of the duplex and the other where the stacking at the center is broken, thus allowing this junction to act as a hinge and increasing flexibility. Small loops favor states where stacking at the center of the duplex is preserved, with loop bases either flipped out or incorporated into the duplex. Duplexes with longer loops show more of a tendency to unstack at the bulge and adopt an open structure. The unstacking probability, however, is highest for loops of intermediate lengths, when the rigidity of single-stranded DNA is significant and the loop resists compression. The properties of this basic structural motif clearly correlate with the structural behavior of certain nano-scale objects, where the enhanced flexibility associated with larger bulges has been used to tune the self-assembly product as well as the detailed geometry of the resulting nanostructures. We further demonstrate the role of bulges in determining the structure of a "Z-tile," a basic building block for nanostructures

    Rapid sympathetic cooling to Fermi degeneracy on a chip

    Full text link
    Neutral fermions present new opportunities for testing many-body condensed matter systems, realizing precision atom interferometry, producing ultra-cold molecules, and investigating fundamental forces. However, since their first observation, quantum degenerate Fermi gases (DFGs) have continued to be challenging to produce, and have been realized in only a handful of laboratories. In this Letter, we report the production of a DFG using a simple apparatus based on a microfabricated magnetic trap. Similar approaches applied to Bose-Einstein Condensation (BEC) of 87Rb have accelerated evaporative cooling and eliminated the need for multiple vacuum chambers. We demonstrate sympathetic cooling for the first time in a microtrap, and cool 40K to Fermi degeneracy in just six seconds -- faster than has been possible in conventional magnetic traps. To understand our sympathetic cooling trajectory, we measure the temperature dependence of the 40K-87Rb cross-section and observe its Ramsauer-Townsend reduction.Comment: 5 pages, 4 figures (v3: new collision data, improved atom number calibration, revised text, improved figures.

    DNA bipedal motor walking dynamics: an experimental and theoretical study of the dependency on step size

    No full text
    We present a detailed coarse-grained computer simulation and single molecule fluorescence study of the walking dynamics and mechanism of a DNA bipedal motor striding on a DNA origami. In particular, we study the dependency of the walking efficiency and stepping kinetics on step size. The simulations accurately capture and explain three different experimental observations. These include a description of the maximum possible step size, a decrease in the walking efficiency over short distances and a dependency of the efficiency on the walking direction with respect to the origami track. The former two observations were not expected and are non-trivial. Based on this study, we suggest three design modifications to improve future DNA walkers. Our study demonstrates the ability of the oxDNA model to resolve the dynamics of complex DNA machines, and its usefulness as an engineering tool for the design of DNA machines that operate in the three spatial dimensions

    The Inflammatory Response to Double Stranded DNA in Endothelial Cells Is Mediated by NFκB and TNFα

    Get PDF
    Endothelial cells represent an important barrier between the intravascular compartment and extravascular tissues, and therefore serve as key sensors, communicators, and amplifiers of danger signals in innate immunity and inflammation. Double stranded DNA (dsDNA) released from damaged host cells during injury or introduced by pathogens during infection, has emerged as a potent danger signal. While the dsDNA-mediated immune response has been extensively studied in immune cells, little is known about the direct and indirect effects of dsDNA on the vascular endothelium. In this study we show that direct dsDNA stimulation of endothelial cells induces a potent proinflammatory response as demonstrated by increased expression of ICAM1, E-selectin and VCAM1, and enhanced leukocyte adhesion. This response was dependent on the stress kinases JNK and p38 MAPK, required the activation of proinflammatory transcription factors NFκB and IRF3, and triggered the robust secretion of TNFα for sustained secondary activation of the endothelium. DNA-induced TNFα secretion proved to be essential in vivo, as mice deficient in the TNF receptor were unable to mount an acute inflammatory response to dsDNA. Our findings suggest that the endothelium plays an active role in mediating dsDNA-induced inflammatory responses, and implicate its importance in establishing an acute inflammatory response to sterile injury or systemic infection, where host or pathogen derived dsDNA may serve as a danger signal.United States. Dept. of Defense (CDMRP Predoctoral Training Award)National Institutes of Health (U.S.) (NIH BioMEMS Resource Center Grant P41 EB-002503)National Institutes of Health (U.S.) (NIH Grant RO1AI063795)Shriners Hospital for Childre

    DETC Induces Leishmania Parasite Killing in Human In Vitro and Murine In Vivo Models: A Promising Therapeutic Alternative in Leishmaniasis

    Get PDF
    Background: Chemotherapy remains the primary tool for treatment and control of human leishmaniasis. However, currently available drugs present serious problems regarding side-effects, variable efficacy, and cost. Affordable and less toxic drugs are urgently needed for leishmaniasis. Methodology/Principal Findings: We demonstrate, by microscopy and viability assays, that superoxide dismutase inhibitor diethyldithiocarbamate (DETC) dose-dependently induces parasite killing (p,0.001) and is able to ??????sterilize?????? Leishmania amazonensis infection at 2 mM in human macrophages in vitro. We also show that DETC-induced superoxide production (p,0.001) and parasite destruction (p,0.05) were reverted by the addition of the antioxidant N-acetylcysteine, indicating that DETC-induced killing occurs through oxidative damage. Furthermore, ultrastructural analysis by electron microscopy demonstrates a rapid and highly selective destruction of amastigotes in the phagosome upon DETC treatment, without any apparent damage to the host cell, including its mitochondria. In addition, DETC significantly induced parasite killing in Leishmania promastigotes in axenic culture. In murine macrophages infected with Leishmania braziliensis, DETC significantly induced in vitro superoxide production (p = 0.0049) and parasite killing (p = 0.0043). In vivo treatment with DETC in BALB/C mice infected with Leishmania braziliensis caused a significant decrease in lesion size (p,0.0001), paralleled by a 100-fold decrease (p = 0.0087) in parasite burden. Conclusions/Significance: Due to its strong leishmanicidal effect in human macrophages in vitro, its in vivo effectiveness in a murine model, and its previously demonstrated in vivo safety profile in HIV treatment, DETC treatment might be considered as a valuable therapeutic option in human leishmaniasis, including HIV/Leishmania co-infection

    The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics

    Get PDF

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore